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Abstract

Latent factor models offer a very useful framework
for modeling dependencies in high-dimensional mul-
tivariate data. In this work we investigate a class of
latent factor models with hidden noisy-or units that
let us decouple high dimensional vectors of observable
binary random variables using a ’small’ number of
hidden binary factors. Since the problem of learning
of such models from data is intractable, we develop
its variational approximation. We analyze special
properties of the optimization problem, in particular its
“built-in” regularization effect and discuss its impor-
tance for model recovery. We test the noisy-or model
on an image deconvolution problem and illustrate the
ability of the variational method to succesfully learn
the underlying image components. Finally, we apply
the latent noisy-or model to analyze citations in a
large collection of Statistical Machine Learning papers
and show the benefit of the model and algorithms by
discovering useful and semantically sound components
characterizing the dataset.

Keywords: Learning, Variational methods, Bayesian
networks.

1 Introduction

Latent variable models [14, 2] provide a very useful
framework for modeling dependencies in high dimen-
sional data. The models are often used in the compo-
nent analysis where we want to identify characteristics
of a small number of underlying components (factors,
sources, or signals) that combine into the expression
of observed high dimensional data. Examples of la-
tent factor models include probabilistic principal com-
ponent analysis [18, 3], mixtures of factor analysers [1],
multinomial PCA (or aspect) models [5, 10, 4], multi-
cause model [9, 16], or other independent component
analysis frameworks [1, 15]. In addition to their role
in modeling and understanding the structure of high-

dimensional data, latent factor models used in the com-
ponent analysis can be applied in the dimensionality
reduction where the vector of hidden factors represents
a low-dimensional representation of the data sample.

In this work we investigate a special class of latent
factor models that let us represent high-dimensional
multivariate distributions of binary attributes and their
local dependencies. The dependencies are modeled in
terms of a small number of hidden binary factors that
are combined through noisy-or units. Intuitively, noisy-
or units let us model local dependencies (couplings)
among observable components in the data indirectly – in
terms of hidden factors and their values. Such a frame-
work is especially useful if we want to model random bi-
nary variables with confounded stochastic fluctuations.
However, it can be also applied in more general set-
tings to approximate local dependencies among random
variables. We believe that models with such characteris-
tics can be very useful and applied to represent stochas-
tic dependencies among components of large distributed
systems, such as failures or congestions in transporta-
tion networks, spread of disease in epidemiology, and
others.

The key step of component analysis corresponds to
the learning of the parameters of the latent factor model
from the data. Once the model is learned it can be
used to make inferences on hidden factors, such as to
identify the document topics in the aspect model [10, 4]
or regulatory signals in the microarray DNA data [13].
In the statistical sense the learning corresponds to the
estimation of parameters of the model. The limitation
of latent factor models is the complexity of the learning
problem; the standard EM formulation (decomposition)
becomes exponential in the number of hidden factors.
Variational approximations offer one possible solution to
make the learning task more efficient, but at some loss
of accuracy. To address this problem, we develop and
test a variational learning algorithm for optimizing the
parameters of the noisy-or network with hidden factors.
Our algorithm builds upon and extends the work of
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Figure 1: A bipartite belief network structure of the
latent factor models with noisy-or units. x is a vector
of binary random variables that are observable and s
is a vector of hidden binary factors. Latent factors
and noisy-or units model local interactions between
components of xj .

Jaakkola and Jordan who focused on and developed
methods of variational inference for noisy-or networks
[11]. The methods for learning a noisy-or network model
with hidden components have not yet been investigated,
to our knowledge. A very restricted model was explored
by Kearns and Mansour [12] but their algorithm is
exponential in the maximum number of hidden factors
contributing to any observable variable. Our algorithm
does not make any structural assumption and it is able
to recover very well the active (nonzero) structure of a
noisy-or network.

In the following text, we first describe the noisy-
or network model with hidden units and its limitation
in efficient inferences. Next we analyze the problem
of learning the parameters of the latent factor network
from data and point out the shortcommings of the exact
Expectation-Maximization (EM) technique associated
with its computational complexity. To alleviate the
problems with the exact EM we develop and present
its variational approximation. We test the model
and the approximation algorithm on a synthetic image
deconvolution problem. We investigate two aspects
of the approach: recovery of complex multivariate
distributions and dimensionality reduction, and show
a very good performance of the algorithm on both of
these tasks. Finally, we apply the model to analyze
citations in a large collection of Machine Learning
papers. We show the benefit of the new model and the
algorithm by discovering useful and semantically sound
subcommunities characterizing the dataset.

2 Latent Factor Model with Noisy-or Units

Consider a latent variable model with bipartite be-
lief network structure illustrated in Figure 1. Nodes
in the top layer represent a vector of latent factors
s = {s1, s2, . . . , sK} with binary {0, 1} values and nodes
in the bottom layer an observable vector of binary vari-
ables x = {x1, x2, . . . , xd}. We assume that x is a

high-dimensional vector and that d > K. The connec-
tions between two layers of the bipartite graph represent
dependencies among the components of the observable
variables: the nodes coupled by one of the latent fac-
tor nodes are assumed to exhibit a local dependency
pattern. The probabilistic dependency between nodes
in the two layers is modeled via the noisy-or conditional
distribution, which gives us a compact (low-complexity)
parameterization of the relation among configurations of
hidden factors and observable variables. The parame-
ters Θ of the model consist of:

• a set of prior probabilities πi parameterizing the
(Bernoulli) prior distributions P (si) for every hid-
den factor i;

• a set of probabilities pij representing parameters of
noisy-or conditional probability tables, one for each
pair of hidden factor i and observed component j.

The structure of the model is similar to the QMR-DT
model used for diagnosis in internal medicine [17]; the
difference is that the top layer variables in our model
are hidden. Their sole purpose is to model stochastic
interaction patterns among observable variables in x.

2.1 The joint distribution over observables
Given the bipartite model, the joint probability of an
observation vector x is defined as:

P (x) =
∑

{s}




d∏

j=1

p(xj |s)



(
K∏

i=1

p(si)

)
, (2.1)

where {s} denotes the sum over all configurations of s,
and P (si) is the prior probability of a hidden factor
si. Given a vector of hidden binary factors s, the
conditional probability p(xj |s) for an observable random
component xj ∈ {0, 1} is obtained through a noisy-or
model as:

P (xj |s) =

[
1− (1− p0j)

K∏

i=1

(1− pij)si

]xj

.

[
(1− p0j)

K∏

i=1

(1− pij)si

](1−xj)

,(2.2)

where p0j is the leak probability that models “all other”
causes. The Equation 2.2 can be reparameterized with
θij = − log(1− pij) to obtain:

P (xj |s)

= exp

[
xj log

(
1− exp

{
−θ0j −

k∑

i=1

θijsi

})

+ (1− xj)

(
−θ0j −

K∑

i=1

θijsi

)]
. (2.3)



2.2 Factorization The bottleneck in computing the
joint probability over observables P (x) in Equation 2.1
is the sum that ranges over all possible latent factor
configurations, and thus, it is exponential in K. It is
easy to see that if P (xj |s) for both xj = 0 and xj = 1
can be expressed as:

P (xj |s) =
K∏

i=1

h(xj |si), such that ∀i, j : h(xj |si) ≥ 0

(2.4)
then the full joint and the joint over the observables
P (x) decompose as:

P (x, s) =
d∏

j=1

P (xj |s)
K∏

i=1

P (si) =

K∏

i=1


P (si)

d∏

j=1

h(xj |si)


 , (2.5)

P (x) =
∑

{s}

K∏

i=1


P (si)

d∏

j=1

h(xj |si)




=
K∏

i=1


∑

{si}




d∏

j=1

h(xj |si)


 P (si)


 .(2.6)

But this means that the summation in Equation 2.1 can
be performed efficiently. We note that Condition 2.4 is
sufficient to ensure the efficiency of other probabilistic
inferences, such as the posterior of a hidden factor si:

P (si|x) ∼ P (si)
d∏

j=1

h(xj |si). (2.7)

2.3 Factorization via variational approximation
The Equation 2.3 for P (xj |s) does not factorize for

xj = 1. Thus, in general, it is impossible to compute
P (x) efficiently. To address this problem we approx-
imate P (xj |s) for xj = 1 with a factored variational
lower bound used by Jaakkola and Jordan [11] in fully
observable settings:

P (xj = 1|s) (2.8)

≥
K∏

i=1

exp
{

qj(i)si

[
log(1− e

−θ0j− θij
qj(i) )

− log(1− e−θ0j )

]
+ qj(i) log(1− e−θ0j )

}
,

where qjs represent sets of variational parameters defin-
ing a multinomial distribution. Each component qj(i)
of the distribution can be viewed as a responsibility of
a latent factor si for observing xj = 1.

Incorporating the variational bound in the first
part of Equation 2.3 we can obtain approximations
P̃ (x|s,Θ,q) ≤ P (x|s,Θ), P̃ (x, s|Θ,q) ≤ P (x, s|Θ) and
P̃ (x|Θ,q) ≤ P (x|Θ) that factorize along latent factors
si.

3 Learning of Noisy-or Networks with Hidden
Units

The problem of learning of noisy-or bipartite networks
has been addressed only in fully observable settings,
that is, when both sources and observations are known.
The learning methods take advantage of the decomposi-
tion of the model created by the introduction of special
hidden variables. EM algorithm is then used to estimate
the parameters of the modified network, which translate
directly into the parameters of the original model. A
reader interested in these transformations may consult
papers by Heckerman [6], Vomlel [19] or Diez and Galan
[8].

3.1 Standard EM learning Learning of the latent
factor version of the Noisy-or network is much harder.
Let D = {x1,x2, · · ·xN} be a set of independent
identically distributed samples of observable variables.
Our objective is to find parameters Θ that maximize the
likelihood of the data, P (D|Θ). A standard approach
to learn the parameters of the model in the presence of
hidden variables is to use the Expectation-Maximization
(EM) algorithm [7]. The EM computes the parameters
iteratively by taking the following parameter update
step:

Θ∗ = arg max
Θ

N∑
n=1

〈log P (xn, sn|Θ)〉P (sn|xn,Θ′)

where Θ′ denotes previous-step parameters.
The main problem in applying the EM to our

noisy-or model is that the joint distribution over ev-
ery “completed” sample P (xn, sn|Θ) does not de-
compose along hidden factors si and its expectation
〈log P (xn, sn|Θ)〉P (sn|xn,Θ′) requires to iterate over all
possible factor configurations. This is unfeasible since
the configuration space grows exponentially in the num-
ber of factors. To alleviate this problem we optimize the
parameters using the variational learning framework.

3.2 EM for variational learning The idea is to
approximate the likelihood terms with their imprecise,
but structurally more convenient surrogates. Additional
set of free variational parameters is introduced to offer
more flexibility and tune the approximation to specific
settings. In our model, we substitute true conditional
probabilities P (xn|sn, Θ) that do not factorize, with



their factored lower-bound variational approximation
P̃ (xn|sn,Θ,qn) as described in Section 2.3. Note
that every datapoint xn comes with a different set of
variational parameters qn.

In maximum likelihood learning we optimize the
loglikelihood log P (D|Θ). In our variational approach
we optimize its lower bound:

log P̃ (D|Θ,q) =
N∑

n=1

log P̃ (xn|Θ,qn)

The new quantity log P̃ (D|Θ,q) depends on both pa-
rameters of the noisy-or model Θ as well as on the vari-
ational parameters q. Although we are ultimately inter-
ested in optimizing Θ and variational parameters only
play an auxiliary role, from the viewpoint of optimiza-
tion of log P̃ (D|Θ,q) there is no difference between the
two and they must be treated the same way. Such an
optimization can be carried out within the EM frame-
work. In particular, the quantity can be maximized by
iteratively reoptimizing (Θ,q) pairs:

(Θ,q)∗ = arg max
Θ,q

N∑
n=1

〈
log P̃ (xn, sn|Θ,qn)

〉
, (3.9)

where 〈·〉 denotes the expectation, in this case taken
over P (sn|xn,Θ′,q′n) and

P̃ (xn, sn|Θ,qn) = P̃ (xn|sn,Θ,qn)P (sn|Θ) (3.10)

P (sn|xn,Θ′,q′n) = Q′(sn) =
P̃ (xn, sn|Θ,qn)
P̃ (sn|Θ′,q′n)

,

and Θ′,q′n represent values of the parameters in the
previous step. To simplify the notation in the rest of the
paper, we use Q′(sn) to denote the posterior on hidden
factors given the previous-step parameter values. Note
that even if the P̃ quantities are not probabilities, the
posterior Q′(sn) is.

3.3 Factorization of Expectations Thanks to the
factored form of P̃ (xn|sn,Θ,qn), optimization steps
in Equation 3.9 do not require us to iterate ex-
plicitly over all possible hidden factor configurations.
More specifically, by substituting the expressions for
P̃ (xn, sn|Θ,qn) and by taking the expectation in terms
of the posterior Q′(sn) we obtain:
〈
log P̃ (xn, sn|q)

〉
Q′(sn)

(3.11)

=

[
K∑

i=1

〈sn
i 〉Q′(sn) log

πi

(1− πi)
+ log(1− πi)

]
+

+

[
d∑

j=1

(
K∑

i=1

−〈sn
i 〉Q′(sn) − θij(1− xn

j )

)
− θ0j(1− xn

j )

]

+

d∑
j=1

K∑
i=1

[
〈sn

i 〉Q′(sn)q
n
j (i)xn

j log

(
1− e

−θ0j−
θij

qn
j

(i)

)

+
(
1− 〈sn

i 〉Q′(sn)

)
qn

j (i)xn
j log(1− e−θ0j )

]

We see that for our factored approximation, the
expectations are easy and the computations boil down
to taking expectations over individual factors. Since
the hidden factors take on binary values 0 and 1,
the expectations for individual factors are just their
probabilities of assuming value 1 and can be calculated
using Equation 2.7.

3.4 Parameter optimizations in EM In every
cycle of the EM algorithm we must reoptimize both
the parameters Θ and all variational parameters qn,
one set per every data point. Unfortunately, no closed
form solution for this task exists. We resort to iterative
solutions, where parameters qn and Θ are updated
(optimized) until convergence.

We apply numerical and iterative optimization tech-
niques to obtain partial solutions. However, we note
that the dependencies among parameters to be opti-
mized are relatively sparse and optimizations can be
often performed quite efficiently. In particular, the iter-
ative formula for a variational parameter qn

j (i) only in-
volves qn

j (i) itself. We are dealing with DK instances of
one-dimensional optimization for each datapoint, rather
than with optimization in a higher-dimensional space.

Complete parameter update formulas we derived
and use in our procedure are summarized in Figure
2. The updates were derived by calculating partial
derivatives of the objective function and setting them
to 0.

The precise analysis of algorithm’s time complex-
ity would be a tedious undertaking as it involves con-
siderations of the convergence rates of nested iterative
procedures. We demonstrate experimentally that the
approximation yields a tractable algorithm.

3.5 Regularization effect While testing our vari-
ational learning algorithm we noticed its ability to au-
tomatically shut off “unused” noisy-or links. This sug-
gests the presence of an inherent regularization correc-
tion. Examining the objective function (Equation 3.9)
and optimization updates (in Figure 2) we can see that
there is indeed a “natural” tendency of the method to
drive unused parameters to 0, due to the presence of the
term: −〈sn

i 〉Q′(sn)θij(1−xn
j ) in the objective function in

Equation 3.9. The term can be viewed as a regulariza-
tion penalty assigned to large values of θij if these are
not supported by data. Intuitively, the link with a poor



Updates of variational parameters qn
j (i) (one per sample). Iterate until fixpoint:

qn
j (i) ← 〈sn

i 〉Q′(s)
1

log(1− e−θ0j )

[
qn
j (i) log(1−An(i, j))− θij

An(i, j)
1−An(i, j)

− qn
j (i) log(1− e−θ0j )

]
(3.12)

subject to condition
∑K

i=1 qn
j (i) = 1 assured through the normalization step. An(i, j) stands for e

−θ0j− θij
qn
j

(i) .
Updates of θijs.Search for the root of ∂F/∂θij via a numerical method:

N∑
n=1

〈sn
i 〉Q′(s)

[
−1 + xn

j

1
1−An(i, j)

]
= 0 (3.13)

Updates θ0js. Search for the root of ∂F/∂θ0j via a numerical method:

N∑
n=1

[
K∑

i=1

〈sn
i 〉Q′(s)qn

j (i)xn
j

(
An(i, j)

1−An(i, j)
− e−θ0j

1− e−θ0j

)]
+

[
−(1− xn

j ) +
K∑

i=1

xn
j qn

j (i)
e−θ0j

1− e−θ0j

]
= 0 (3.14)

Updates of πis:

πi =
1
N

N∑
n=1

〈sn
i 〉Q′(s) (3.15)

Figure 2: A summary of iterative optimization steps for the variational learning method

support in the data is shut down to avoid the penalty.

4 Evaluation of the variational learning
algorithm

To analyze the performance of our variational algo-
rithm, we applied it first to an image deconvolution
problem. In this problem, we use a a bipartite noisy-or
network with 8 hidden sources. Each source is associ-
ated with an 8 × 8 image pattern. The patterns are
shown in Figure 3. If the source is active (set to 1)
its noise-corrupted pattern is projected to the output.
The patterns from multiple sources (if they are active)
and the leak pattern are combined using noisy-or units
to generate the output image. The image patterns and
their associated noise components are defined fully by
the parameters of the noisy-or model.

We used the above noisy-or model to generate a set
of training images. Figure 4 shows examples of 16 con-
voluted images generated by the model. The learning
objective was to estimate and recover the distribution of
the original model purely from the observational data
– the noise-corrupted convoluted images. In order to
assess the characteristics of our variational algorithm
we run two sets of experiments, observing the quality
of the solution and its running time while varying (1)
the number of samples and (2) the number of assumed
latent sources.

Figure 3: Image patterns associated with hidden sources
used in the image deconvolution problem. The ninth
(bottom-right) pattern corresponds to the leak.

4.1 Effect of the sample size We used the noisy-
or network with 8 hidden sources and image patterns
from Figure 3 to generate datasets with 50 - 5000
examples. These samples were then given to the
learning algorithm. The learning process always starts
from the complete network, no structure relating the
sources and observables is given. The new (learned)
model was evaluated in terms of: (1) Comparison
of learned source images to original images (2) Data



Figure 4: Example images generated by the latent
noisy-or model with parameters corresponfing to pat-
terns in Figure 3.

reconstruction error.1

Figure 5 shows the parameters of three noisy-or
models recovered by the learning algorithm for varied
sample sizes. It is apparent from the figure that larger
number of samples lead to progressively improving mod-
els that are closer to the original model and approxi-
mates its patterns better. The model learned from 50
samples is cumbered with high variance brought about
by the low number of training examples, but neverthe-
less it begins to capture some of the original source pat-
terns. Sample sizes of 500 and 1000 improve the pattern
recovery. For 1000 samples we were able to recover al-
most all sources used to generate data with relatively
small distortion. Naturally, inherent stochasticity will
cause the sources to differ slightly in each run of the
algorithm.

Latent variable models are very useful in dimen-
sionality reduction. Given the learned noisy-or model
and an image observed on the output, one can compute
the posterior of each hidden source and pick the value
(0 or 1) that comes with the higher posterior proba-
bility. Hidden sources and their 0/1 values then act
as a low-dimensional representation of the data. High-
dimensional data can be recovered back by sampling the
output according to hidden source values and the pa-

1Note that it is very difficult to apply standard distance mea-
sures for distributions, such as KL-divergence or Hellinger’s dis-
tance, to evaluate and compare two high-dimensional multivariate
distributions. In our case, it would require to compute and com-
pare probabilities of 264 possible image configurations. Approxi-
mate distance measures based on corresponding empirical distri-
butions obtained via sampling suffer from a similar problem: it
is extremely difficult to achieve an overlap carrying a significant
probability mass between the supports of the respective empirical
distributions.
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Figure 6: Reconstruction errors obtained from the
learning algorithm for varied sample-sizes, averaged
over 50 trials.

rameters of the noisy-or model. The difference between
the original data point and its reconstruction after the
initial reduction defines the reconstruction error. In our
case, the reconstruction error is computed as portion of
bits in which the original data differs from the recon-
structed data.2

Figure 6 illustrates the reconstruction error of the
model learned by the variational algorithm for different
sample sizes. We clearly see the reconstruction error
is smaller for very small sample sizes and stabilizes
for sample sizes over 200. This can be explained by
overfitting of the model for small sample sizes, and the
saturation of the model to its stochastic limit for larger
sample sizes.

The running time of the variational algorithm for
different sample sizes is shown in Figure 7. The nearly
straight line plotted indicates that the complexity of
the algorithm grows polynomially with the number of
samples. Indeed, we have observed that the time com-
plexity scales approximately linearly with the number of
samples. There appears to be no statistically significant
effect of sample size on the number of EM iterations the
algorithm performs.

4.2 Model selection In real-world data, the correct
number of hidden sources is only rarely known in ad-
vance. Then the important question is whether the cor-
rect number of sources can be determined automatically
by the learning algorithm. To analyze this aspect of the
problem we run a series of learning experiments on mod-
els with different number of latent sources. To assure

2To assess the significance of the learning error, consider that
the training sets used contain on average approximately 32% of
1s. Therefore, the trivial majority-class reconstruction baseline
would achieve that error.



Figure 5: Examples of models learned from 50, 200 and 1000 samples (from left to right). The differences among
models illustrate the improvement in the model recovery for increasing sample size. Although some source images
are visibly identified with as few as 50 samples, the noise in many images is apparent. Models learned from 200
and 1000 samples are improved. Contrasting 200-sample model to 1000-sample model, a source image stepped
out of the leak factor (top row, right column). Additionally, the sources have stabilized, “shadows” were cleaned
(compare the source in left column, second row). The only flaw to the 1000-sample model is the source in the
center which captured two of the original sources.
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Figure 7: Runtimes of the algorithm, averaged over 50
trials. Considering the wide range of sample sizes tested,
we plot the runtimes on a log-log plot.

a fair comparison, the dataset used to train the models
was fixed over the course of the experiment.

The results are summarized in Figure 8. The recon-
struction error plot demonstrates that as we increase the
number of latent sources the learner takes advantage of
all sources available to it at 6 sources or fewer, then
starts to plateau at 8 sources. This agrees well with the
number of latent sources used to generate the data.

To assess the recovery performance, we looked at
patterns learned by the algorithm, much like those in
Figure 5 and counted the number of identified sources.
The inspection of the learned models showed that
the number recovered sources levels out at around
7, other sources were shut down via regularization

effects (Section 3.5). Taking into account the existence
of the leak node (which effectively adds one source),
this matches or is very close to the true number of
sources. Taking advantage of these phenomena one does
not have to identify the number of hidden sources in
advance, the algorithm finds a reasonable estimate of
the correct number on its own at only minor additional
computational cost.

The analysis of running times for different number
of sources in Figure 8 shows that the runtimes scale
roughly linearly with the number of assumed latent
sources. This gives an empirical support for the effi-
ciency of variational EM approximation as compared to
the exponential complexity of the exact EM algorithm
with respect to the number of sources.

5 Noisy-or component analysis of citation data

To show the benefit of our model in a real-world applica-
tion we applied the model to perform component analy-
sis of a citation dataset derived from online publications
in the area of Machine learning. The dataset was built
from approximately 17,000 hypertext documents from
the CiteSeer service. We chose 40 prominent authors in
the field of Statistical Machine Learning, to limit our-
selves to a domain where we can confidently assess the
soundness of the obtained results. The data were then
processed into a binary matrix. This matrix contains 1
at position (i, j) if the document i cites author j.

The noisy-or model fits well the structure this
dataset exhibits. A contemporary paper in this field
is likely to touch upon several topics and combine or
improve on them. We would expect the hidden factors
to roughly match the paper keywords, each topic factor
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Figure 8: Average reconstruction error (left panel), average number of identified sources (middle) and median
running times (right) plotted against the number of assumed latent sources. The red dotted line in the middle
plot represents the true number of sources (8). The statistics in this figure were obtained from 25 experimental
runs.
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Wainwright
Weiss

Welling
Yedidia

Figure 9: The result of the noisy-OR component anal-
ysis on the citation dataset. The columns visualize the
parameters of the noisy-or loading matrix after they are
rescaled by the prior of the source. Black fields corre-
spond to 0s in the loading matrix, while white would
correspond to 1s.

having its seminal papers whose authors thereby become
likely to be cited.

We ran our noisy-or model on the CiteSeer dataset
using 5 hidden sources. Figure 9 illustrates the outcome
of the analysis. The obtained results indicate the
presence of the following components:

• The authors dominating the first component are: J.
Pearl, M. Jordan, S. Lauritzen and D. Spiegelhal-
ter. Weaker ties are to W. Buntine, N. Friedman
and D. Koller. This component discovered many
respected authors of basic references and tutorials
on Bayesian belief networks.

• The second source was shut down as the algorithm
did not reveal any other interesting group in this
run.

• C. Burges, B. Schölkopf, A. Smola and V. Vapnik
form the core of the third component. Without
any doubt, this component represents the kernel
and SVM research community.

• The authors prominent in the fourth factor are
Z. Ghahramani, M. Jordan, G. Hinton, R. Neal,
L. Saul, C. Bishop and M. Tipping. This source
captures the variational approximation community.

• The last component consists of the following au-
thors: B. Frey, W. Freeman, K. Murphy, S. Lau-
ritzen, J. Pearl, Y. Weiss and J. Yedidia. All au-
thors published extensively on loopy belief propa-
gation, using J. Pearl’s BP algorithm. The pres-
ence of an outlier in this set, S. Lauritzen, can be
attributed to the fact that he is among the most
frequently cited authors in the general context of
Bayesian networks. Conclusively, we can say our
algorithm found the LBP community.



The results obtained for the citation data show the
potential benefit of the noisy-or model and its ability to
uncover semantically sound component structure in the
binary data. We note there is a conceptual difference
between the noisy-or model and mixture models, such
as the aspect model [10], used frequently in the analysis
of documents. The key difference is that the aspect
model assigns each document a convex combination
of topic factors, while our model computes a vector
of binary indicators, each corresponding to one topic.
Each model stresses a different type of the structure and
both analyses can complement each other to improve
the understanding of the data at hand.

6 Conclusions

We have devised and presented an EM-based variational
algorithm for learning latent factor models with noisy-or
units. The algorithm alleviates the key limitation of ex-
act learning algorithms – their exponential dependency
on the number hidden factors. The proposed variational
algorithm makes no assumption about the structure of
of the underlying noisy-or network, the structure is fully
recovered during the learning process.

We tested the algorithm on two problems: (1) image
deconvolution problem and (2) analysis of citation data.
The algorithm showed a good scale-up potential with
a very good model recovery and error reconstruction
performances on the image problem. On citation data
it successfully discovered components that represent
established communities. We demonstrated how the
noisy-or latent variable model offers itself as a tool of
inquiry of social networks and internet communities.

An in-depth comparison of the noisy-or component
analyzer to alternative component analysis frameworks,
most importantly Probabilistic Latent Semantic Analy-
sis, remains an interesting open problem and a focus of
our continued research interest.
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